Digital Enterprise

Openness Standards

and Best Practices

Raymond Kok, Portfolio Architecture, UX & Innovation
Chief Technology Office, Siemens PLM Software

Siemens 'Ingenuity for Life'

Global Product Data Interoperability Summit | 2016

Global trends

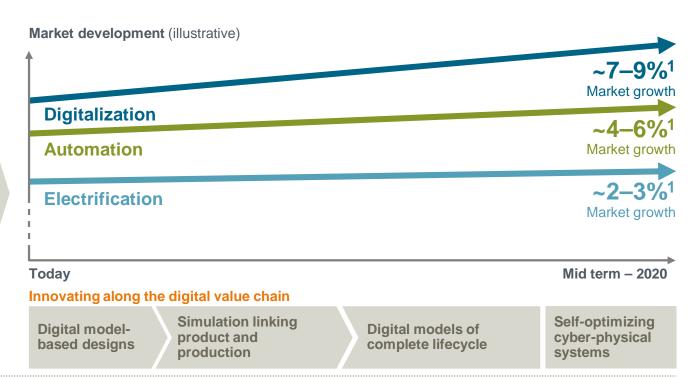
Digital transformation

Networked world of complex and heterogeneous systems

Globalization

Global competition driving productivity and localization

Urbanization


Infrastructure investment needs of urban agglomerations

Demographic change

Decentralized demand of a growing and aging population

Climate change

Higher resource efficiency in an all-electric world

¹ Est. market growth (CAGR) over cycle

Siemens Digitalization

Global Product Data Interoperability Summit | 2016

Leveraging digital technology trends for concrete customer benefits

Collaboration and mobile

Smart data and analytics

Cloud technologies

Connectivity and Web-of-systems

Cyber-Security

Siemens Digitalization

Improved productivity & time-to-market

Design & engineering

Higher flexibility & resilience

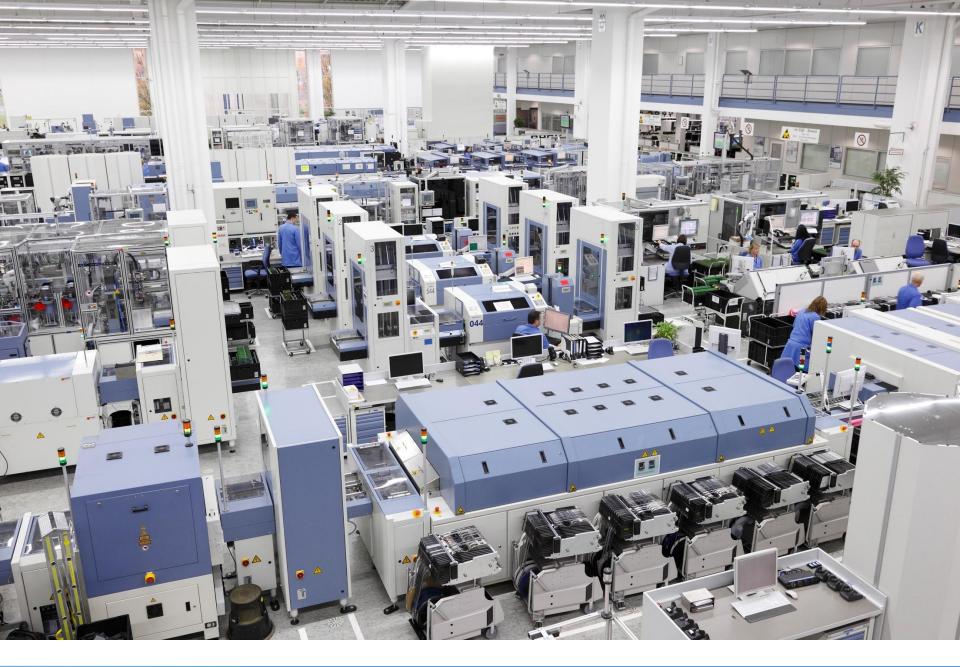
Automation & operation

Increased availability & efficiency

Maintenance & services

Combining the virtual & physical world ...

... across entire customer value chains



Digital Enterprise

Global Product Data Interoperability Summit | 2016

Ever expanding scope for standards

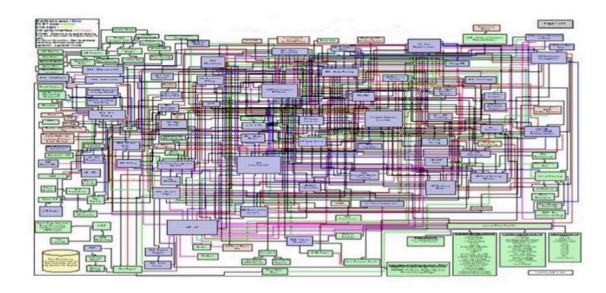
Digital Twin

Manufacturing Planning

+ Manufacturing Engineering +

Physical production system

Manufacturing Execution

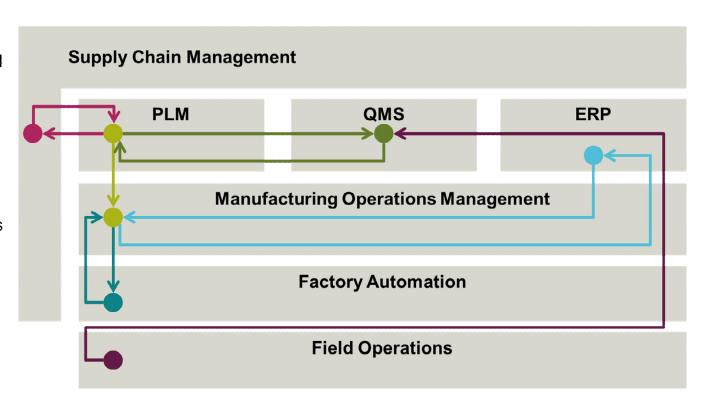


The reality of establishing a Digital Enterprise

Global Product Data Interoperability Summit | 2016

- Many integration points to worry about across PLM, ERP, MES
- Many legacy systems and bespoke interfaces
- Many processes based on manual intervention
- People looking for ways to standardize the definition. execution, and exchange of the 'Digital Twin'

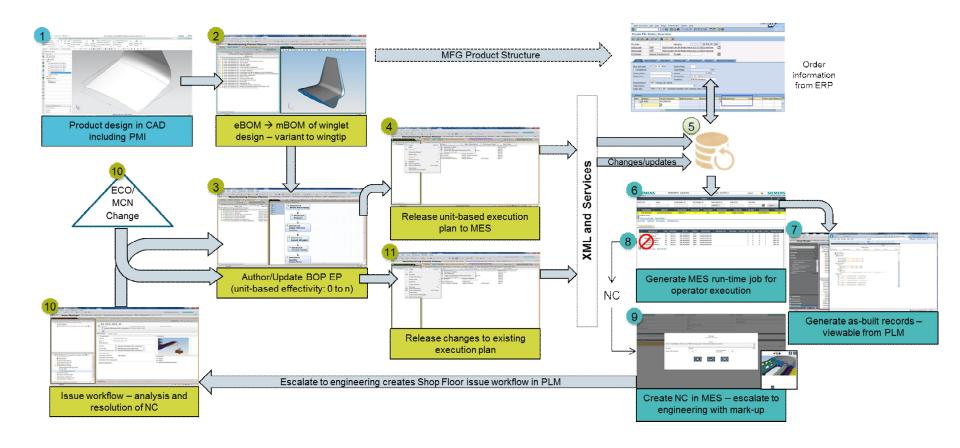
Looks familiar? Complex enterprise IT is a major reason for OEMs to struggle and not being able to adopt the 'Digital Enterprise' to its full extent



The 'big picture' of Digital Enterprise Integration

Global Product Data Interoperability Summit | 2016

- Foundation starts with PLM, MOM, and ERP
- Many loops!
- Don't forget QMS,
 Factory Automation,
 and Field Operations
- Many BOMs!
- Include your supply chain



The 'big picture' of Digital Enterprise Integration

Global Product Data Interoperability Summit | 2016

New variant for aircraft wingtip

Standards Challenge

Global Product Data Interoperability Summit | 2016

Growing interest in implementing processes based on standards supporting multiple disciplines and business needs

- IT / MIS / Operations
- Customer / Program
- Government / Regulation
- Supplier Management

Driving the identification, definition, evaluation of standards and processes across, and throughout, multiple tiers

- Industry
- Business
- Suppliers
- Customers

Standards for

- Interoperability
- Business processes and methods
- Models

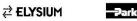
The Zachman Framework for Enterprise Architecture

https://www.zachman.com/about-the-zachman-framework

Advantages and Benefits Supporting Standards

Global Product Data Interoperability Summit | 2016

Realize a direct return on investment for the products you engineer and sell

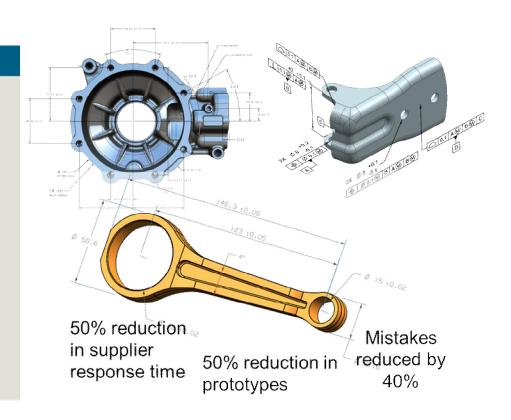

- Lowering installation and startup costs
- Reducing need to maintain large inventories
- Enabling interchangeability of components improving design with less "custom" effort
- Increasing safety (e.g. ISO 26262)

Use of standards in industry

- Improves communication
- Provides practical application of expert knowledge
- Represents years of experience and avoids necessity of starting each project from ground up
- Support advancement of new technology / architectures while preserving existing SLAs

In general, standards help you achieve operational excellence by

- Improving performance
- Lowering maintenance costs
- Reducing downtime and enhancing operability

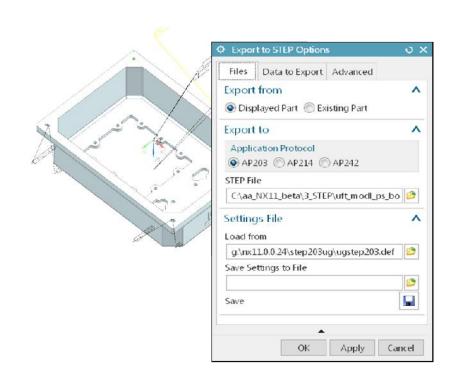


Example – PMI, GD&T ASME Y14.41 and ISO 16792

Global Product Data Interoperability Summit | 2016

ASME Y14.41, ISO 16792

- Conveys information such as geometric dimensioning and tolerancing (GD&T), 3D annotation, surface finish and material specifications
- Allows for the manufacture and inspection of the product without need for traditional 2D drawings
- Standards provide the underpinnings for Model Based Definition (MBD), i.e. a complete digital definition of the product within the 3D model.
- Good example of standards influencing commercial CAD software vendors

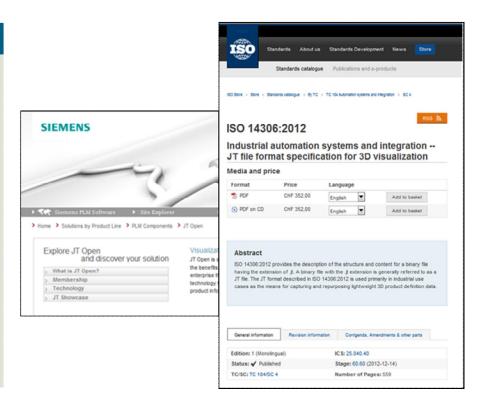


Example – Data exchange based on AP 242

Global Product Data Interoperability Summit | 2016

AP 242

- Focused on all facets of a 'digital Part'
- Siemens PLM Software closely followed the inception and development of AP242
- Currently extending the implementation of AP242 across our product portfolio
- For example, NX CAD extending the integration of AP242 in the following areas:
 - Semantic PMI
 - Tessellated Geometry
 - Import/Export of 242 Compressed Files
 - Import/Export of 242 XML Files
 - Import/Export of Compressed 242 XML Files

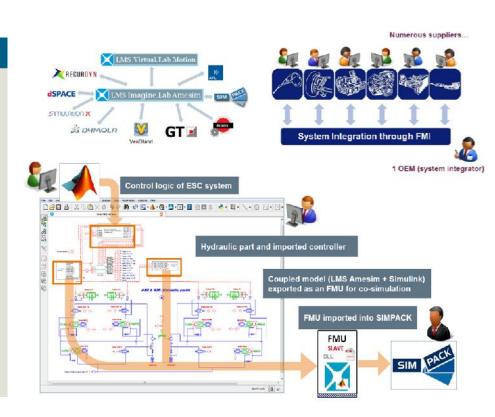


Example – JT (ISO 14306)

Global Product Data Interoperability Summit | 2016

ISO JT

- The JT File Format unanimously passed a global ballot on December 11, 2012 and has been accepted by ISO as an International Standard
- JT V9.5 is now ISO/IS 14306:2012 JT file format specification for 3D product data visualization
- The format specification was published to the ISO purchase/download site December 15, 2012
- JT Open membership going strong, JT International Conference 2016

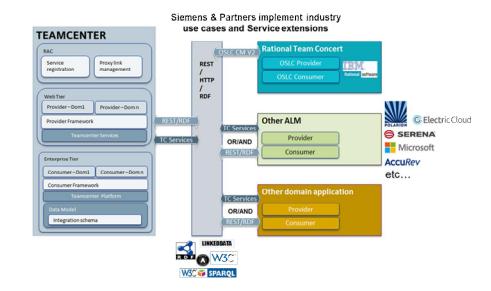


Example – Co-simulation based on MODELISAR FMI

Global Product Data Interoperability Summit | 2016

Functional Mock-up Interface

- Collaborative MBSF
 - Between OEMs and suppliers
 - Between departments
 - Involving different domains
- Tool neutral software interface for either model. exchange, or co-simulation
- Open format, with publicly available specs
- Siemens is an active member of FMI Steering Committee and FMI Design group
- Siemens has highly contributed to the specification of FMI 1.0 and FMI 2.0

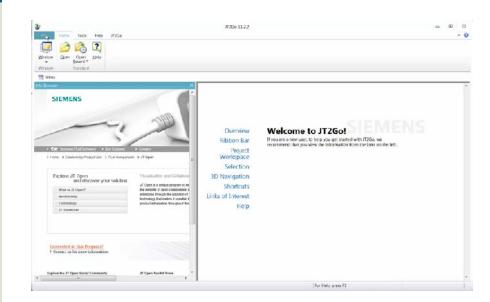


Example – Integrations based on OSLC

Global Product Data Interoperability Summit | 2016

OSLC

- Focused on PLM and ALM integration
- Siemens has integrated OSLC principles with Teamcenter Linked Data Framework
- Reference remote resources based on persistent URIs
- Extend SOA to support HTTP REST services
- Delegate user interface where applicable
- Initially focused on CM and RM specifications as provided by OSLC
- OSLC support with service extensibility based on Teamcenter Business Modeler IDE



Example – Electronic Disclosures based on JT + PDF

Global Product Data Interoperability Summit | 2016

JT + PDF

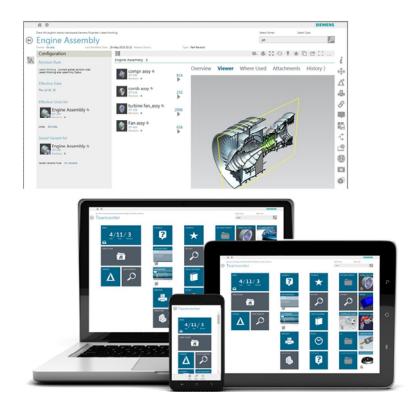
- Good example of combining industry-driven standards
- Addressing security and translation concerns from major customers
- Combining the strengths of JT with documents published as PDF
- Enabled by attaching JT to PDF for 3D and PMI interrogation and visualization
- Supporting 'paperless' collaboration
- No need for redundant for data translation to support 3D visualization

Example – MES integration based on ISA 95

Global Product Data Interoperability Summit | 2016

ISA 95

- The ISA 95 standard consists of the following parts:
 - Part 1: Models and Terminology
 - Part 2: Object Model Attributes
 - Part 3: Activity Models of Manufacturing Operations Management
 - Part 4: Object models and attributes for Manufacturing Operations Management
 - Part 5: Business to Manufacturing transactions
- Used as the foundational data model for MES and Enterprise Interoperability
- Foundation for Siemens SIMATIC IT Manufacturing Operations Management

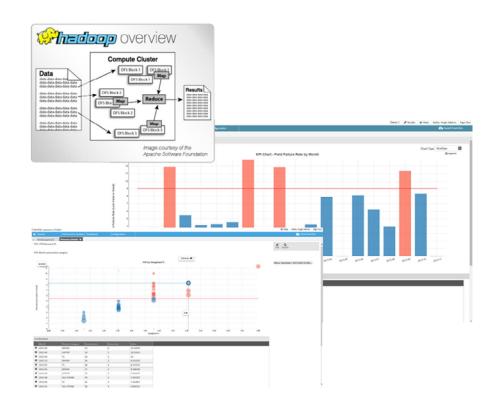


Example – Programming standards, HTML 5

Global Product Data Interoperability Summit | 2016

HTML 5

- HTML5 is the latest evolution of the standard that defines HTML
- Zero install content delivery
- Typically referenced along with other programming standards like CSS, JavaScript, and related technologies like WebGL
- For Siemens as technology provider key foundation for delivering product innovation, e.g. Active Workspace
- Allows for ease of configuration, extensibility and embedding as part of your extended enterprise



Example – Technology standards, Hadoop

Global Product Data Interoperability Summit | 2016

Hadoop

- Open-source software framework for storing data and running applications on clusters of commodity hardware
- Good example of how open source can spark a new wave of innovation, i.e. Big Data
- Allows Siemens to close the loop between 'virtual' and 'physical' by correlating sensor and engineering data
- Hadoop and related technology set at the foundation of new Siemens products like **OMNEO**

Best Practices to Consider

Global Product Data Interoperability Summit | 2016

- Establish a 'Digital Enterprise' office responsible for the governance of tool chain integration, semantics and best practices
- Focus on 'digital threads' with high ROI for your business, e.g. model based engineering, electronic work instructions, etc.
- Use industry 'state of the art' for critical and value-add business processes
- Leverage industry driven standards via consortiums
- Use open standards where semantics are comprehensive, mature and broadly supported and hence 'least common denominator' is not a problem, e.g.
 - PMI and GD&T
 - Model Based Engineering
- Make sure that you consider shared semantics between the virtual, and physical world to accelerate your IoT adoption
- Include your supply chain!

Thank you

ELYSIUM Parker Aerospace NORTHROP GRUHHMAN () BIDEINIO

GLOBAL PRODUCT

INTEROPERABIL

www.siemens.com/plm

DATA